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Electrostatic capacity of two unequal adhering spheres 

A Moussiaux and A Ronveaux 
Department de Physique, Facultes Universitaires N-D de la Paix, 5000-Namur, Belgium 

Received 31 March 1978, in final form 27 July 1978 

Abstract. We give a detailed general solution of the Dirichlet problem for two exterior 
touching spheres. From this general result we derive an explicit formula giving the 
electrostatic capacity of two unequal exterior adhering spheres. 

1. Introduction 

The calculation of the so called ‘plasmon modes’ of various cavities imbedded in metals 
is of growing interest in the modern studies of surface physics. (Ronveaux et a1 1977, 
Lucas eta1 1975). These eigenmodes w are related to the dielectric constant E ( W )  by the 
usual state equation of the metal: 

e and m are the charge and the mass of the electron, n is the electronic density. The 
dielectric constant is quantised by the classical boundary condition of electromagnetism 
at the metal surface. Neglecting the retardation effect, the boundary value problem is: 

V 2 V ( r )  = 0 r outside all boundary surfaces 

at each boundary. 
(2) a v” 

an 
E-=- 

The dynamical potential solution V ( r )  eiw‘ must be always regular, null at infinity and 
continuous at each surface. 

For most of the finite geometry for which the Laplace equation is separable, these 
modes are known analytically. Our laboratory was recently interested in finding the 
modes of two adhering metallic spheres in order to compute the exact Van der Waals 
interaction between two metallic particles. In that case the problem was to solve 
complicated coupled Fredholm integral equations which have not yet been solved. But 
the ‘static mode’, for which the metal surfaces are equipotentials, solves the elec- 
trostatic Dirichlet problem for the touching spheres and we realise that the scientific 
literature apparently does not mention the capacity of these two spheres with respect to 
infinity. This note derives the following expression for the capacity C(R1, R 2 )  of two 
adhering metallic spheres (see figure 1): 
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where n is the ratio of the two radii; R 1  and R2 of the two spheres ( n  = R 2 / R 1  > 1) and 
$ ( z )  is the logarithmic derivative of the Euler r ( z )  function. 

~ ( z )  = rw/r(z) 
$(l) is equal to the Euler constant y = -03772,  and the units are such that the capacity 
C of a unique sphere of radius R is C = R. 

This formula reduces, when the two spheres are of equal radius R ,  to C = 2R In 2 
which is a well known result (Lebedev 1965). 

2. General solution of the exterior Dirichlet problem for two external adhering spheres 

The coordinate system of a tangent sphere (see figure 1) is related to the Cartesian 
coordinates x y z by the relations (Lebedev 1965, Sneddon 1974). 

x = p c o s ~ = [ a a / ( a 2 + p 2 ) ] C O S ~  

y = p sin 4 = [ a a / ( a 2  + p 2 ) ]  sin 4 
z = - -ap/ (a2+pZ) .  

( 4 )  

(rs:= p=o p-- - a/2/3, 

t - p:o 

j=- a’2p- 

n 

Figure 1. Coordinate system of tangent Figure 2. Capacity C ( R 1 R 2 )  of the two adhering spheres 
spheres. (n = R1/R2> 1). 

The Laplace equation V 2 $ ( a ,  p, 4 )  = 0 is only R separable in this orthogonal system of 
coordinates via the change of function: 

$(a, PI 4) = (a2+p2)1’2A(a)B(P) .  

The function A ( a )  is a solution of the Bessel equation: 

d2A 1 dA 

and the function B ( p )  is a solution of the constant coefficient equation 
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where p and m are the constants of separation: 

m = 0 ,  1,2 ,  . . . 
O<p<O. 

The solution of the exterior Dirichlet problem for which the potential reduces respec- 
tively to Vl(a, 4) and Vz(a, 4) on the sphere p = p+ and p = p- is given by super- 
position of the elementary solution and is: 

with 

so= 1 

s, = 2  m = 1 , 2 , .  . . . (9) 

The advantage of this representation lies in the fact that M ( p )  depends only on VI and 
N ( p )  on Vz via the integral equation obtained from the usual Fourier decomposition of 
V,(a, 4) in components C‘,“’(a) and SLm)(a):  

~ ( a ,  4) = t 1 sm{cLm)(a) cos m4 +sLm’(a) sin m 4 }  
m 

m=O 

The functions a m N ( p )  and bmM(p)  are now defined by their Hankel transforms 

and the potential at any (a, p, 4) is now given, after permutation of the two integrals, 
by : 

V ( a ,  p, 4) = ( 2 ~ ) - ’  1 (Am(a,  p )  cos m 4  + B m ( a ,  p )  sin m 4 ) ( a 2 + p 2 ) ’ / 2  

with: 

m 

m =O 

at any interior point of the P+ and p- spheres, and at any exterior point: 
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In the next section, the Fourier components C, and S, are constant functions for m = 0 
and the last integrals can be exactly computed via the well known result: 

We also need the Hankel converse integral: 

3. Capacity of the two touching spheres 

If the given potentials V,(a, 4 )  reduce to the constant VO, the charge density mi on each 
of the two conducting spheres b+ and P -  are given by the normal derivative of the 
following potential ( j  = 1, 2): 

The charge density ai(a) and the total charge Q, on each sphere are computed using the 
definition 

In the following, the index j = 1 ( j  = 2) corresponds to the + (-) sign in all indexed 
quantities. 

Each integral in the P derivative of equation (14) is of the type (12) or (13) or 
obtained from these integrals by differentiation with respect to @. The charge density mi 
can therefore be written as: 

The total charge Q = QI + Qz is now 
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with 

[exp(-CL IP+I) cosh P(IP+I + IP-I) - exp(-p IP-l)l exp(-cLIP+I) 
+ [exp(-cLIP-l) cosh CL (IP+I + IP-I) -exp(-p IP+I)I exp(-CL IP-I) m 

sinh cL(IP+I + IP-I) I = I 0  dCL 

7 

(18) 

Now the change of variable x = up and the relation between each radius and the P,  
= a/2Rj, gives: 

C=- (R1+R2) 
2 

cosh ((RI + R z ) x / ~ R I R ~ )  (exp(-x/R1) + exp(-x/R2)) 

1. -2  exp [-X((Rl+RZ)I2RlR2)1 
sinh ((RI + R2)x/2R1R2) 

+ Iom dx 

(19) 
If we now introduce the ratio n of the radii (n = R1/R2),  the capacity can be written: 

+n)+-(2 2n In 2 -  l)+--J(n)] n ( n  5 1) 
l + n  n + l  

with 

J ( n ) = l  dy cothy[exp(-n+ly)-2exp(-y)+exp(--y)]. 2n 2 (20) m 

0 n + l  

The negative signs in the exponentials ensure the convergence of the integral at infinity. 
At the origin, the bracket inside the integral cancelled the singularity of the coth 
function. 

Explicitly the three integrals behave as (Gradshteyn and Ryzhik 1965): 

where the 4 function is the usual logarithmic derivative of the r function. After 
subtraction of the singularity the capacity takes the form indicated in the introduction. 

In order to use tables of the 4 ( z )  function, usually given for z > 1 ,  we transform the 
capacity formula in the following form: 

The reflection formula (Abramowitz and Stegun 1965): 

4 ( 1 - 2) = $(z  ) -L 7r cot 7rz (23) 
allows us to write the capacity formula with only one tj function. 

4. Conclusions 

The capacity formula (equation (22)) shows that for large n the capacity reduces to 
nR1 = Rz,  which is obvious from a physical point of view. R I  is the larger sphere. 
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The asymptotic domain is reached very quickly. We have therefore plotted in figure 
2 the graph of C/R1 - n in terms of n in the interval 1 c n S 5 .  

The twin adhering conducting sphere is used as absolute instrument for measuring 
high voltage by frequency measurement of the system oscillating in the field (Smith and 
Rungis 1975, Love 1975). 

The sphere geometry is easier to manufacture than the ellipsoidal geometry which 
was used before. 

The induced dipoles due to the oscillations can be computed exactly for an ellipsoid 
and also for the twin sphere geometry with two equal spheres. (Smith and Rungis 
1975). From our developments it would not be difficult to solve exactly the induced 
dipole problem in the more general case of two spheres of different radii. 

Note that in figure 2 we restrict the domain of variation of the ratio n to the range 
1 c n <CO, or because, for obvious reasons, the range 0 < n s 1 is reached from the 
range 1 s n <CO by permutation of the two spheres, 
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